skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hutchens, Zackary L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present measurements of the neutral atomic hydrogen (Hi) mass function (HiMF) and cosmic Hidensity (ΩH I) at 0 ≤z≤ 0.088 from the Looking at the Distant Universe with MeerKAT Array (LADUMA) survey. Using LADUMA Data Release 1 (DR1), we analyze the HiMF via a new “recovery matrix” method that we benchmark against a more traditional modified maximum likelihood (MML) method. Our analysis, which implements a forward modeling approach, corrects for survey incompleteness and uses extensive synthetic source injections to ensure robust estimates of the HiMF parameters and their associated uncertainties. This new method tracks the recovery of sources in mass bins different from those in which they were injected and incorporates a Poisson likelihood in the forward modeling process, allowing it to correctly handle uncertainties in bins with few or no detections. The application of our analysis to a high-purity subsample of the LADUMA DR1 spectral line catalog in turn mitigates any possible biases that could result from the inconsistent treatment of synthetic and real sources. For the surveyed redshift range, the recovered Schechter function normalization, low-mass slope, and “knee” mass are ϕ * = 3.5 6 1.92 + 0.97 × 1 0 3 Mpc−3dex−1, α = 1.1 8 0.19 + 0.08 , and log ( M * / M ) = 10.0 1 0.12 + 0.31 , respectively, which together imply a comoving cosmic Hidensity of Ω H I = 3.0 9 0.47 + 0.65 × 1 0 4 . Our results show consistency between recovery matrix and MML methods and with previous low-redshift studies, giving confidence that the cosmic volume probed by LADUMA, even at low redshifts, is not an outlier in terms of its Hicontent. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026
  2. ABSTRACT Galaxy environment plays an important role in driving the transformation of galaxies from blue and star forming to red and quenched. Recent works have focused on the role of cosmic web filaments in galaxy evolution and have suggested that stellar mass segregation, quenching of star formation, and gas-stripping may occur within filaments. We study the relationship between distance to filament and the stellar mass, colour, and H i gas content of galaxies using data from the REsolved Spectroscopy of a Local VolumE survey and Environmental COntext (ECO) catalogue, two overlapping census-style, volume-complete surveys. We use the Discrete Persistence Structures Extractor to identify cosmic web filaments over the full ECO area. We find that galaxies close to filaments have higher stellar masses, in agreement with previous results. Controlling for stellar mass, we find that galaxies also have redder colours and are more gas poor closer to filaments. When accounting for group membership and halo mass, we find that these trends in colour and gas content are dominated by the increasing prevalence of galaxy group environments close to filaments, particularly for high-halo mass and low-stellar mass galaxies. Filaments have an additional small effect on the gas content of galaxies in low-mass haloes, possibly due to cosmic web stripping. 
    more » « less
  3. Abstract We present a four-step group-finding algorithm for the Gas in Galaxy Groups (G3) initiative, a spin-off of thez∼ 0 REsolved Spectroscopy Of a Local VolumE (RESOLVE) and Environmental COntext (ECO) surveys. In preparation for future comparisons to intermediate redshift (e.g., the LADUMA survey), we design the group finder to adapt to incomplete, shallow, or nonuniform data. We use mock catalogs to optimize the group finder’s performance. Compared to friends-of-friends (with false-pair splitting), the G3 algorithm offers improved completeness and halo-mass recovery with minimal loss of purity. Combining it with the volume-limited Hicensus data for RESOLVE and ECO, we examine the Hicontent of galaxy groups as a function of group halo mass. Group-integrated HimassMH I,grprises monotonically over halo massesMhalo∼ 1011–1014.5M, pivoting in slope atMhalo∼ 1011.4M, the gas-richness threshold scale. We present the first measurement of the scatter in this relation, which has a median of ∼0.3 dex and is asymmetric toward lowerMH I,grp. We discuss interesting tensions with theoretical predictions and prior measurements of theMH I,grp–Mhalorelation. In an appendix, we release RESOLVE DR4 and ECO DR3, including updates to survey redshifts, photometry, and group catalogs, as well as a major expansion of the ECO Hiinventory with value-added data products. 
    more » « less
  4. Abstract In the local universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (Hi), radio surveys to probe the cosmic evolution of Hiin galaxies also offer exciting prospects for exploiting OHMs to probe the cosmic history of gas-rich mergers. Using observations for the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep Hisurvey, we report the first untargeted detection of an OHM atz> 0.5, LADUMA J033046.20−275518.1 (nicknamed “Nkalakatha”). The host system, WISEA J033046.26−275518.3, is an infrared-luminous radio galaxy whose optical redshiftz≈ 0.52 confirms the MeerKAT emission-line detection as OH at a redshiftzOH= 0.5225 ± 0.0001 rather than Hiat lower redshift. The detected spectral line has 18.4σpeak significance, a width of 459 ± 59 km s−1, and an integrated luminosity of (6.31 ± 0.18 [statistical] ± 0.31 [systematic]) × 103L, placing it among the most luminous OHMs known. The galaxy’s far-infrared luminosityLFIR= (1.576 ±0.013) × 1012Lmarks it as an ultraluminous infrared galaxy; its ratio of OH and infrared luminosities is similar to those for lower-redshift OHMs. A comparison between optical and OH redshifts offers a slight indication of an OH outflow. This detection represents the first step toward a systematic exploitation of OHMs as a tracer of galaxy growth at high redshifts. 
    more » « less